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Abstract 

By synthesizing earlier work of Orel and Miller and of Meyer, 

McCurdy, and Miller, a model for describing laser-induced electronically 

non-adiabatic collision processes is constructed which treats all de­

grees of freedom-- heavy particle (i.e,, translation, rotation, and 

vibration), electronic, and photon by classical mechanics. This then 

makes it relatively easy to carry out calculations to simulate such 

processes within a dynatnically consistent framework. Application is 

made to the test case H + LiF + Li + HF reaction considered by Light and 

Altenberger-Siczek. The most interesting feature revealed by these 

classical calculations is maxima in the reaction probability as a func­

tion of initial translational energy at energies below the laser-free 

threshold, It is seen that this structure can be understood as a 

Franck-Condon-like effect. 



I. Introduction 

There has been considerable interest recently in how high power 

lasers affect molecular collision processes. Most papers on the topic 

1-5 6-10 have been theoretical, although there have been some reports of 

experiments which show these effects. Most workers, both theoretical 

and experimental, have dealt with the effect of visible/UV lasers, i.e., 

those which can cause electronic excitations, but it has been pointed 

out5 that high power infrared lasers can also modify collision pro-

cesses (e.g., increase rate constants for chemical reactions) without 

causing electronic excitation. 

The purpose of this paper, which also considers the effect of 

visible/UV lasers on collision phenomena, is two-fold. First, we show 

how a completely classical model can be constructed for such processes, 

i.e., one which describes the nuclear motion (translation, rotation, 

and vibration), electronic degrees of freedom, and the laser radiation 

field all by classical mechanics and thus in a dynamically consistent 

framework. The usefulness of this kind of approach is apparent if one 

wishes to describe _!l!Olecular collision phenomena, e.g., atom-diatom 

inelastic and reactive collisions: the large number of quantum states 

(electronic, vibrational, rotational, and photon) involved makes quan-

tum mechanical treatments extremely difficult and limited to special 

cases (e.g., .S:SJllinea:r: A + BC collision systems). \.Jith the classical 

model described below, on the other hand, calculations can be carried 

out with standard classical trajectory methods; for A+ BC collisions, 

for example, the only difference from the standard situation is that 

there are two additional classical degrees of freedom, the electronic 

degree of freedom and the photon degree of freedom, Quantum effects, 



if they are thought to be significant, can be incorporated to some ex~ 

tent within the "classical S~matrix" mode1.
11 

This classical model, which we develop in Section II, is essen~ 

tially a synthesis of two earlier developments: Orel and Miller
5 

have 

developed (and applied) a classical model for molecular collisions on 

one potential energy surface (i.e,, one adiabatic electronic state) in 

a radiation field-~i,e,, a model which treats the nuclear degrees of 

freedom (i.e., translation, rotation, and vibration) and the photon 

. 12 
degree of freedom by classical mechanics--and Meyer, McCurdy, and Miller 

have developed a model for electronically non-adiabatic collision pro~ 

cesses which treats the nuclear degree of freedom and the electronic 

degrees of freedom all classically, Here, therefore, we present a clas-

sical model which treats everything -- nuclear degrees of freedom, elec-

tronic degrees of freedom, and the photon degrees of freedom~-classically. 

Again, the advantage of this approach is that it is straightforward, via 

numerical integration of the classical equations of motion, to describe 

the interaction of all these degrees of freedom dynamically consistently. 

The second purpose of the paper is to apply this classical model 

to a test problem, the reaction 

LiF + H + Li + HF (1) 

as considered by Light and Altenberger-Siczek,4b who carried out quantum 

mechanical coupled-channel calculations. The interest is to see how 

the reaction probability is affected by a visible/UV laser which can 

cause electronic excitation during the collision. The results of our 

classical model are consistent with the quantum results, where the latter 



exist, but more importantly, we investigate a wider range of initial 

collision energies and this reveals an interesting structure in the 

energy dependence of the reaction probability: at energies below the 

threshold for reaction without the laser, the reaction probability is 

significantly enhanced at particular collision energies (which depend 

on the frequency of the laser). This effect is understood as a Franck­

Condon-like effect and should pertain in general. This and other as­

pects of the classical calculations for laser-induced reaction are pre­

sented and discussed in Section III. 



II. The Classical Model 

The classical Hamiltonian for a molecular system and a single mode 

radiation field has the standard form 

(2.1) 

where the various terms are the molecular Hamiltonian, which involves 

nuclear (i.e., translational, rotational, and vibrational) and electronic 

degrees of freedom, the Hamiltonian for the pure radiation field, and 

the interaction between the two, respectively. If (x,p) denote the 

nuclear coordinates and momenta and (n,q) the classical action-angle 

variables for the electronic degrees of freedom (assuming a 2-state 

electronic system), then the Meyer-McCurdy-Miller
12 

theory gives the 

molecular Hamiltonian as 

(2.2) 

where H ,(x), n,n' = 0,1, is the diabatic electronic potential energy n,n ~ 

surface. If (N,Q) are the classical action-angle variables of the 

5 radiation field, then the Orel-Miller theory gives H d and H. (in 

the dipole approximation) as 

H 
rad 

Hint = -~ IN cos Q ~(x,n,q) 

ra lnt 

(2.3) 

(2.4) 



where w is the frequency of the laser, V the volume of the radiation 

cavi and p(x,n,q) is the component of the moleculdr dipole moment 

along the polarization vector of the laser. Finally, to express the 

dipole moment )J as a function of the classical electronic action~angle 

variables (n,q) we invoke the Heisenberg correspondence relation as 

d . db d d M'll lZa h' · 1scusse y McCur y an 1 er; t 1s g1ves 

]J(x,n,q) 

+ 2/n(l~n) w
01 

(~) cos q (2.5) 

where ]J ,(x), n,n' = 0,1 is the matrix of the dipole moment operator 
n,n ~ 

in the 2~state electronic basis, as a function of the nuclear coordi-

nates x. 

Combining Eqs. (2.1)-(2.5) gives the complete classical Hamiltonian 

for the nuclear (p,x), electronic (n,q), and photon (N,Q) degrees of 

freedom as 

H(p,x,n,q,N,Q) 

(2.6) 

From this Hamiltonian one can numerically integrate Hamilton's equations 

13 
in the standard way. Initial conditions for the nuclear coordinates 

13 
and momenta (~,£) are specified in the usual way, and for the electronic 

and photon variables, the initial values of n and N are integers, the 



initial electronic state and the initial number of photons in the radi~ 

ation field, respectively. If the popular ouasiclassical model
13 

is 

employed, then q and Q are chosen initially by Monte Carlo sampling 

methods. (Section IIIA discusses this in more detail). 

For the application in the next section, the Hamiltonian of Eq. (2.6) 

is simplified following Light et al:
4
b 

0 (2. 7) 

Setting H
01 

~ 0 corresponds to neglecting electronically non-adiabatic 

effects in the absence of the radiation field, and setting w00 (~) = 

0 corresponds to neglecting the interaction of nuclear motion 

within a given electronic state with the radiation field (the Orel-

1 Sb,c) f f 1 1 d h ( Miler process ; at the requency o aser emp oye ere i.e., 

visual/UV), this latter interaction is indeed negligible. The quanti-

ties H00 (~) and H11 C~) are thus the two adiabatic electronic potential 

energy surfaces v0 (~) and v
1 
(~), respectively, so that the Hamiltonian 

of Eq. (2.6) simplifies to 

H(p,x,n,q,N,Q) 

(2.8) 

This is the classical Hamiltonian used for the applications in the 

. (Th 1 L l'k d'f' · 12 
next sectlon. e usua anger- l e mo l lcatlon L e., in the 

last term, ln(l-n) + l(n+{) C.f -n) -- is also made to Eq. (2.8). N is 

so large that replacing N by N + ~ has no significant effect) . 



III, Application of LiF + H + Li + HF 

A. Methodology 

Light et al
4

b considered a collinear version of the above reaction, , __ _ 
and this is the example we also treat, using the same two potential 

energy surfaces as these authors used. (The parameters defining the 

two LEPS potential surfaces are given in Table II of Ref. 4b). The 

classical Hamiltonian of Fig. (2.8) then defines the collision system, 

and the calculations reported below (Section IIIC) were carried out 

within the standard quasi-classical model. 

The methodology of quasi~classical trajectory calculations is well~ 

13 
known. For this example, there are two nuclear degrees of freedom, 

i.e., (p,x)= (P,p,R,r), where (R,P) are the coordinate and momentum for 

relative translation of LiF and H, and (r,p) are the coordinate and 

momentum for vibration for LiF. (~.~) denote the vibrational action-

angle variables for LiF, and r(~.~) and p(~,q) are the algebraic func-

tions which express the cartesian vibrational variables in terms of 

their action-angle variables. 

The initial conditions (at time t
1

) for a trajectory are then 

specified as 

n(t
1

) n
1 

(the electronic quantum number) = 0 or 1 

N(t 1) = N1 (the photon quantum number) = integer 

q ( tl) 

Q(tl) 

r(t
1

) 

p( tl) 

ql 

Ql 

r(~l,ql) 

p(~l.ql) 

(3.1) 



where ~l is an integer, the initial vibrational state, 

i,e,, 

R( t
1

) large 

P(t
1

) = -h~E . 
tr 

reaction~~ 

X = 1 if the trajectory with the indicated initial conditions is 
r 

reactive, and is 0 otherwise~-then the total reaction probability for 

initial quantum numbers n
1

, N
1

, i\ and initial translational energy Etr 

is 

z'IT ziT ziT 

(2rr)-3£dql £dQl £dql Xr(ql,Ql,ql,nl,Nl,~l;Etr), (3,2) 

The integrals over q
1 , Q

1
, and q

1 
are performed by Monte Carlo. 

The explicit form of Hamilton's equations for the present example 

are (since Light el al
4
b assume that ]JOl (~) = ]JOl is coordinate indepen­

dent) 

(JH 
r = ap = p/m 

• 3 H 
R "" 3 p p /]l 

3H 
q=o-n"' 

. 
p 

cos Q cos q ( 3 0 3) 

cos Q cosq 



0 

p 

n "' 

av 
1 

~ n~ 

2/N(n+l) ( 1 -n) cos Q sinq 
2 2 

which are integrated with our usual variable step-size predictor-cor-

1 . h 11 rector a gor1t m. 

B cuss ion 

Before presenting the results of these trajectory calculations, it 

is useful to discuss some qualitative aspects of the process. Figure 1 

shows a sketch of the energy profiles --the potential energy along a 

nreaction coordinate" -- for the two potential energy surfaces. 

Referring to this figure, one sees that the ground state potential 

energy surface has an activation barrier of ~ 0.4 eV, so \vith no laser 

present the reaction probability as a function of initial translational 

energy should have a threshold of ~ 0.4 eV. With a laser of frequency 

w,though, the electronic energy gap v 1~v0 comes into resonance with 

the laser when classical motion on the (initial) ground state surface 

reaches the position s
0 

indicated in Fig. 1, i.e., s
0 

is the value 

for which v
1
-v

0 
= hw. For initial translational energies Etr?: v

0
(s 0), 

therefore, classical motion will reach this position and there will be 

the possibility of resonant electronic excitation; if this happens, 

then reaction (to electronically excited Li* + HF) occurs with high 

probability because motion on the excited potential surface is "down~ 

hill all the way" to products. 



Qualitatively, therefore, one expects a laser of frequency w to 

reduce the threshold of the reaction to approximately v
0

Cs
0
). (Note 

that for the surfaces in Fig. 1, v
0

(s
0

) decreases with increasing~). 

It is also clear that an initial translational energy Etr ~ v0 Cs
0

) is 

the optimum translational energy for reaction (below the laser-free 

threshold of ~ 0.4 eV) because in this case the classical motion spends 

the mos time in the resonant region v1-v
0 

~ hw, i.e., for higher 

translational energies, the classical motion will pass the "resonance 

region" with finite velocity and thus have a smaller probability of 

being electronically excited. 

The primary qualitative effect of the laser is thus to cause a 

peak in the reaction probability at the translational energy Etr ~ v
0

(s
0
), 

i.e., where the classical turning point on the ground state potential 

surface coincides with the resonance region v
1

(s
0

)-V0 (s 0) = hw. This 

is the classical version of a Franck-Condon effect, and one can charac-

terize this behavior semi-quantitatively by calculating the electronic 

transition probability in the Landau-Zener approximation to the curve­

crossing picture in the electronic-field representation. 1 •2 (One con-

siders the two potential curves v
1 

and v
0 

+ hw). Within this model, 

the probability of the electronic transition 0 + 1 with photon transi-

tion N + N - 1 is given by 

(3. 4) 

with 



where 

~12~ 

2rrhwN 
v 

In this approximation the probability of electronic excitation is 0 for 

r < V 
0 

Cs
0
), jumps to 1 for E tr "" V 

0 
(s

0
), and then falls for higher 

E 
tr 

For still higher translational energies, E > 0.4 eV, the reac~ 
tr -

tion probability will again rise since reaction can then take place on 

the ground state potential energy surface. Figure 2 shows a sketch of 

this expected energy dependence of the reaction probability. One can 

estimate the width of the Franck-Condon peak in the reaction probability 

near Etr "' v0 (s0) by determining the value of Etr - v0 Cs 0) for which 

P = i. Using Eq. (3. 4), this "half-width" is easily found to be 

1 "' 
2 

21T 12 

hln~ 
(3, 5) 

which is seen to be proportional to the square of the laser intensity. 

This qualitative discussion above, which is based on the one di-

mensional picture of the reaction in Fig. 1, is modified in several 

ways when the vibrational degree of freedom is taken into account. 

Most significantly, the Franck-Condon maximum in the cross section 

below the laser-free threshold will, in general, be split into two 

maxima, This is because the "Franck-Condon region", i.e., the place 

where the classical motion spends the most time, is now where the 



vibrational motion, as well as the translational motion, experiences a 

classical turning point. Vibrational motion has two classical turning 

points, however, so there will be two points on the ground state poten­

tial surface where the translational and vibrational motion simultane­

ously experience classical turning points (i.e., have zero momenta). 

The electronic energy gap v
1
-v

0 
will, in general, be different at these 

two points, and this leads to two different Franck-Condon maxima. (If 

there were no translation-vibration coupling in the potential energy 

surfaces and if the vibrational potential functions for the two elec­

tronic states were the same, then v
1
-v

0 
would be the same at the two 

simultaneous translation-vibration turning points and the two Franck­

Condon maxima would be coincident). This will be seen more explicitly 

in the next section. 

C. Results of Trajectory Calculations 

Figure 3 shows the total reaction probability as a function of 

initial translational energy for the quasi-classical trajectory model 

as described in Section IliA. LiF is always in its ground vibrational 

state initially. The dotted curve is the laser-free result, showing 

the expected threshold at ~ 0.4 eV. The solid curve is obtained for 

a laser with frequency hw 6.2 eV and a power such that w
01

E
0 

~ 0.01 eV 

(E0 = 18TihiDN
1

/V),and the dashed curve is the result for a laser of the 

same frequency but lower power, ~01E0 = 0.008 eV. 

Both laser-induced curves in Fig. 3 show the two Franck-Condon 

maxima as discussed at the end of the previous section, and the height 

and width of the peaks increase with increasing laser power. At the still 

lower power corresponding to ~01E 0 = 0.001 eV, the peaks have disappeared. 



The Franck~Condon peaks in Fig. 3 show the asymmetric "line shape" 

suggested by the Landau~Zener model discussed in Section IIIB: with 

increasing translational energy, the reaction probability rises almost 

vertically to a maximum and then falls more gradually. Quantum mechan~ 

ical effects may, of course, modify this structure in some of its details, 

but the gross features are expected to persist in a quantum description. 

Figure 4 illustrates the effect of varying the laser frequency. 

(The laser~free reaction probability is also shown again here). For a 

power corresponding to ]J
01

E
0 

= 0.01 eV, the solid curve is for a frequen~ 

cy hw = 6.2 eV (the same curve as shown in Fig. 3), and the dashed curve 

is for a frequency hw = 6,4 eV. The higher frequency is thus seen to 

lead to a lower threshold for reaction, as is understood from the dis~ 

cussion in Section IIIB. A surprise though, is that the higher frequen-

cy (dashed curve in Fig. 4) has only one peak, not two, in the region 

below the laser~free threshold. 

To understand this latter feature and to confirm that our inter-

pretation of these "Franck~Condon maxima" is actually correct, we com~ 

puted laser-free classical trajectories on the ground state potential 

energy surface to determine the Franck~Condon transition points. For 

a given translational energy E (and with LiF initially in its ground 
tr 

vibrational state) the initial vibrational angle variable was varied 

over its range (0,21T) to determine the two points, (r
1

,R
1

) and (r
2

,R
2
), 

at which translation and vibration have simultaneous classical turning 

points. The electronic energy gaps, v
1
-v

0
, at these two points define 

two frequencies, via hw ~ v1~v0 , for which Etr is a Franck-Condon 

maximum. 



Figure 5 shows, as a function of translational energy E , these 
tr 

two frequencies hw = vl (~,rk) ~vo (~,rk), where (~,rk), k = 1,2 

are the two simultaneous turning points for energy Etr' A horizontal 

line at a given frequency then gives the two translational energies 

at which Franck-Condon maxima should appear for that laser frequency. 

For frequency hw = 6.2 eV, Fig. 5 thus indicates that Franck-

Condon maxima should appear at E ~ 0.15 eV and 0,19 eV, and from the 
tr 

Landau-Zener discussion in Section IIIB it is clear that these are 

actually the energies at which the reaction probability has its sharp 

verticle rise at these energies. 

For the higher frequency, hw = 6.4 eV, Fig. 5 indicates the two 

Franck-Condon energies to be E ~ 0.116 eV and 0.15 eV. The reaction 
tr 

probability for this frequency (dashed curve in Fig. 4) does indeed show 

a sharp rise at E ~ 0,116 eV and also a broadened structure at E ~ 
tr tr 

0,15 eV, but it is clear that this is a case for which the two Franck-

Condon maxima have merged into a single broadened peak. 

It seems clear, therefore, that this Franck-Condon picture of the 

structure in the reaction probability is physically correct. 

Comparing the results of our classical model to the quantum mechan­

ical calculations of Light and Altenberger-Siczek
4
b shows qualitative 

agreement in that there is essentially no reaction below the classical 

threshold for the field strength ~ 01E0 = 0.001 eV, but substantial 

reaction at the higher field ~ 01E0 = 0.01 eV. There is also agreement 

in that essentially all the product Li is electronically excited. The 

agreement for the higher field strength is not quantitative, however, 

the quantum values being a factor of 2 or so smaller than the classical 



~15a~ 

results of Fig. 4 in the energy range E ~ 0.35 ~ 0.45 eV. This was 
tr 

the only energy region reported in the quantum study and unfortunately 

is not the region which contains the Franck-Condon structure seen in 

the present classical calculations. 



IV. Concluding Remarks 

One of the purposes of this paper has been to show how a completely 

classical model can be defined which describes l.aser~induced non-adiabatic 

processes. Because calculations can be carried out within the standard 

quasi-classical framework, it is relatively easy to apply this model to 

molecular collision processes. It would be quite reasonable, for example, 

to treat three-dimensional versions of atom-diatom collision systems. 

The test case which has been treated is the collinear H + LiF + HF + Li 

reaction considered by Light e al.
4

b To the extent that the present 

classical calculations can be compared to these quantum calculations, 

the two are consistent; i.e., at the higher powers, w
01

E
0 

~ 0.01 eV, 

they both show that the threshold for reaction is lowered by the laser. 

Unfortunately, however, the quantum calculations were not extended to 

the energy region where the present classical results show the inter-

esting Franck-Condon structure in the reaction probability, 

This Franck-Condon structure in the cross section is certainly 

the most interesting feature revealed by the present calculations, The 

fact that a laser of frequency w will significantly enhance the reaction 

probability at a particular collision energy E (more precisely, in 
tr 

a narrow Iange of collision energies) is an important point to be aware 

of: knowing how this Franck-Condon energy varies with w provides fair-

ly direct information about the potential energy surfaces that are in-

valved in the process, and in a molecular beam experiment, for example, 

the laser-induced effect will be largest when the collision energy is 

"tuned" to this Franck~Condon regi®n. 
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Figure Captions 

1. Sketch of the potential energy along the reaction coordinate s for 

the two electronic potential energy surfaces for the system 

Ii + LiF + HF + LL E denotes the initial translational energy 
tr 

and w the frequency of the laser. 

2. Sketch of the qualitative dependence of the total reaction proba-

bility on initial translational energy E 
tr 

3. Total reaction probability for H + LiF + HF + Li as a function of 

the initial translational energy E , from a quasi~classical tra­
tr 

jectory calculation. LiF is initially in its ground vibrational 

state. The dotted curve is the laser-free result. The other 

two curves are for a laser frequency hw = 6.2 eV, the laser power 

being such that u
01

E
0 

= 0.01 eV (solid curve) and 0.008 eV (dashed 

curve). 

4. Total reaction probability as in Fig. 3. The dotted curve is the 

laser-free result as in Fig. 3. The other t\vO curves are for a 

laser power such that u
01

E
0 

= 0.01 eV and a frequency hw = 6.2 eV 

(solid curve) and hw = 6.4 eV (dashed curve). 

5. Shown are the two Franck-Condon frequencies hw = v 1 (~,rk) -

v0 C~<,rk), where (~,rk)' k = 1,2, are the two simultaneous 

translation-·vibration turning points on the ground state paten-

tial surface, as a function of the initial translational energy 

E The intersection of the dashed line at frequency hw = 6.4 eV 
tr 

with the two curves gives the two translation energies at which 

Franck-Condon maxima should appear for that laser frequency, 

and similarly for frequency hw = 6.2 eV. 
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